SYNTHESIS AND BIOLOGICAL ACTIVITY OF SOME BASIC--SUBSTITUTED 4,9-DIHYDRO-3-METHYL-4-OXO-1H(2H)--PYRAZOLO[3,4-b]QUINOLINES

Stanislav Rádl and Viktor Zikán
Research Institute for Pharmacy and Biochemistry, 13060 Prague 3

Received December 8th, 1987
Accepted February 8th, 1988

Abstract

Compounds $I a, I b$ were obtained by an alkylation of 4,9-dihydro-6-hydroxy-1,3,9-trimethyl-4--oxo-1 H -pyrazolo[$3,4-b$]quinoline ($V I I b$) with the respective dialkylaminoalkyl chloride. The same alkylation of 4,9-dihydro-6-hydroxy-2,3,9-trimethyl-4-oxo-2H-pyrazolo[3,4-b]quinoline (VIIIb) yielded compounds $I I a$ and $I I b$. Similar alkylation of 4,9-dihydro-3,9-dimethyl-4-oxo-$-1 H$-pyrazolo[3,4-b]quinoline (IXa) and its 6 -methoxy derivative (IXb) afforded IIIa-IIId. Compound IV was prepared from 4-chloro-3-methyl-1 H -pyrazolo[3,4-b]quinoline (Xa) via its 1-(3-dimethylaminopropyl)derivative ($X b$). Compounds VIa, VIb were prepared from 4,9-di-hydro-6-hydroxy-3,9-dimethyl-4-oxo-1 H-pyrazolo[3,4 -b]quinoline ($I X C$) and the respective dialkylaminoalkyl chloride. The compounds prepared were tested for antiviral activity in vivo in mice against influenza virus $\mathbf{A} 2$-Hongkong and encephalomyocarditis virus.

Some pyrazolo[3,4-b]quinolines have similar biological effects as their acridine analogues ${ }^{1-3}$. Antiviral activity of various dialkylaminoalkoxy derivatives of 10 --methyl-9(10H)-acridanons ${ }^{4}$ has incited us to prepare similar compounds $I a, I b, I I a$, $I I b, I I I a-I I I d$, and $I V$. There are a lot of bis-basic-substituted tricyclic synthetic interferon inducers of a general formula $V\left(\right.$ ref. ${ }^{1}$). Antiviral activity of $3,6-\mathrm{bis}$ (aminoalkoxy) acridines is also known^{5}. These facts inspired us to prepare compounds VIa and VIb.

Compounds $I a$ and $I b$ were prepared by alkylation of 4,9-dihydro-6-hydroxy-1,3, 9-trimethyl-4-oxo-1 H-pyrazolo[3,4-b]quinoline (VIIb) with 2-diethylaminoethyl chloride and 3-dimethylaminopropyl chloride, respectively. Similarly, alkylation of 4,9--dihydro-6-hydroxy-2,3,9-trimethyl-4-oxo- 2 H -pyrazolo[3,4-b]quinoline
(VIIIb) yielded compounds $I I a$ and $I I b$. Compounds VIIb and VIIIb were prepared from 6-methoxy derivatives VIIa and VIIIa, respectively ${ }^{6}$. The fact, that alkylation of 4,9-dihydro-3,9-dimethyl-4-oxo-1H-pyrazolo[3,4-b]quinolnie (IXa) affords only 2--alkyl derivatives ${ }^{2.7}$, was used for the preparation of IIIa and IIIb. Similarly alkylation of $I X b$ yielded IIIc and IIId. Alkylation of 4 -chloro-3-methyl- 1 H -pyrazolo-[3,4-b]quinoline $(X a)$ with 3-dimethylaminopropyl chloride in dimethyl sulfoxide in the presence of powdered potassium hydroxide at room temperature yielded 4-chloro-3-methyl-1-(3-dimethylaminopropyl)-1H-pyrazolo[3,4-b]quinoline $\quad(X b)$,

la, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{i} n=2$
16, $\mathrm{R}=\mathrm{CH}_{3} ; n=3$

III $a, \mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{C}_{2} \mathrm{H}_{5} ; n=2$
IIIt, $\mathrm{R}^{\prime}=\mathrm{H}_{;} \mathrm{R}^{2}=\mathrm{CH}_{3} ; n=3$
I/ $c, R^{\prime}=\mathrm{CH}_{3} \mathrm{O} ; \mathrm{R}^{2}=\mathrm{C}_{2} \mathrm{H}_{5} ; n=2$
IIId, $\mathrm{R}^{\prime}=\mathrm{CH}_{3} \mathrm{O} ; \mathrm{R}^{2}=\mathrm{CH}_{3} n=3$

$X=O, S, C O$, bond ${ }_{i} R=C_{i}-C_{L}$ alkyl $; n=1-4$

$$
\|_{a}, \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} ; n=2
$$

$$
116, \mathrm{R}=\mathrm{CH}_{3} ; n=3
$$

N

V/a, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} ; n=2$
V/b, $\mathrm{R}=\mathrm{CH}_{3} ; n=3$
which was converted into $I V$ by boiling in dilute hydrochloric acid. Alkylation of 4,9-dihydro-6-hydroxy-3,9-dimethyl-4-oxo-1 H -pyrazolo[3,4-b]quinoline ($I X c$) with two molar equivalents of 2-diethylaminoethyl chloride and 3-dimethylaminopropyl chloride yielded VIa and VIb, respectively. Compound $I X c$ was prepared by demethylation of its 6 -methoxy derivative $I X b$ with hydrobromic acid ${ }^{6}$. 4,9-Dihydro--6-methoxy-3,9-dimethyl-4-oxo-1 H -pyrazolo[3,4-b]quinoline (IXb) was obtained by reaction of 4-(4-methoxyphenyl)-4-methyl-thiosemicarbazide ($X I$) with ethyl 2-chloroacetoacetate, followed by cyclization of formed 3-(N-methyl-4-methoxy-anilino)-5-methyl-1 H-pyrazole-4-carboxylic acid (XII) by the action of polyphosphoric acid. Compound XII is formed from XI by extrusion of sulfur ${ }^{8}$ from an unstable 1,3,4-thiadiazine intermediate. The starting 4-(4-methoxyphenyl)-4-methyl-

$V / l a, \mathrm{R}=\mathrm{CH}_{3} \mathrm{O}$
VII $6, \mathrm{R}=\mathrm{OH}$

$1 \times a, \mathrm{R}=\mathrm{H}$
X $\times 6, \mathrm{R}=\mathrm{OCH}_{3}$
$X \subset, \mathbf{R}=\mathbf{O H}$

VIIIa, $\mathrm{R}=\mathrm{OCH}_{3}$
VIIIb, $\mathrm{R}=\mathrm{OH}$

$x_{a}, \mathrm{R}=\mathrm{H}$
$X b, \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} . \mathrm{HCl}$
-thiosemicarbazide (XI) was obtained from N -methyl-4-methoxyaniline via $2-[\mathrm{N}$-(4--methoxyphenyl)-N-methyl-thiocarbamoylthio]acetic acid. Similar preparation of 4,9-dihydro-3,9-dimethyl-4-oxo-1H-pyrazolo[3,4-b]quinoline (IXa) has been reported ${ }^{9}$.

XI

XII

Compounds $I a, I b, I I a, I I b, I I I a-I I I d, I V, V I a$, and $V I b$ were tested in vivo in mice for their efficacy against influenza virus A2-Hongkong and encephalomyocarditis virus after p.o. and s.c. administration. The tests were carried out as described before ${ }^{7}$ at the Virological Department of the Institute (Head: Dr. F. Smejkal). None of the compounds tested exhibited any significant antiviral effect.

In the antitumour tests compounds VIa and VIb were administered p.o. or s.c. to animals with experimental tumours according to the usual screening scheme ${ }^{10,11}$. In these tests the selected compounds exhibited no marked antitumour effect against ascitic sarcoma (Sa 37) and Ehrlich tumour (STE). Compound VIb extended the survival with Yoshida ascitic tumour by 62% in a dose of $25 \mathrm{mg} / \mathrm{kg}$ p.o., by 63%
in a dose of $50 \mathrm{mg} / \mathrm{kg}$ p.o., by 27% in a dose of $25 \mathrm{mg} / \mathrm{kg} \mathrm{s.c}$. and 96% in a dose of $50 \mathrm{mg} / \mathrm{kg}$ s.c.

All compounds prepared were tested for their antimicrobial activity in vitro against Streptococcus β-haemolyticus, Streptococcus faecalis, Staphylococcus pyogenes aureus, Pseudomonas aeruginosa, Escherichia coli, Proteus vulgaris, Saccharomyces pasterianus, Trichophyton mentagrophytes, Candida albicans, and Aspergillus niger. The studied compounds had no or relatively small inhibitory effect (minimum inhibitory concentrations higher or equal $100 \mathrm{mg} / 1$).

EXPERIMENTAL

The melting points were determined on an apparatus Mettler FP5 and are not corrected. The UV spectra were taken with a spectrophotometer Perkin-Elmer 550 S in ethanol, molar absorption coefficients are given in $\mathrm{m}^{2} \mathrm{~mol}^{-1}$ (Table I).

General Procedure for Preparation of Ia, Ib, IIa, IIb, IIIa-IIId
Sodium hydride (80% dispersion in mineral oil, $0.9 \mathrm{~g}, 30 \mathrm{mmol}$) was added to a stirred suspension of the respective starting compound (Table II) (12 mmol) in N, N-dimethylformamide (50 ml) and the mixture was stirred under nitrogen for 1 h . Then the appropriate dialkylaminoalkyl chloride hydrochloride (14 mmol) was added and the stirring was continued for additional 4 h , the mixture was left to stand overnight and taken to dryness. The residue was boiled with ethanol,

Table I
UV spectra (molar absorption coefficients in $\mathrm{m}^{2} \mathrm{~mol}^{-1}$)

Compound	$\lambda_{\text {max }}, \mathrm{nm}(\log \varepsilon)$
$I a$	$241(3 \cdot 63), 290(2 \cdot 69), 355(2 \cdot 80), 367(2 \cdot 79)$
$I b$	$242(3 \cdot 61), 290(2 \cdot 69), 355(2 \cdot 79), 367(2 \cdot 79)$
$I I a$	$240(3 \cdot 47), 293(2 \cdot 99), 405(2 \cdot 90)$
$I I b$	$240(3 \cdot 64), 292(2 \cdot 94), 406(2 \cdot 89)$
$I I I a$	$240(3 \cdot 62), 284(2 \cdot 87), 373(2 \cdot 82)$
$I I I b$	$241(3 \cdot 63), 284(2 \cdot 85), 374(2 \cdot 81)$
$I I I c$	$239(3 \cdot 63), 292(2 \cdot 96), 404(2 \cdot 86)$
$I I I d$	$240(3 \cdot 70), 293(3 \cdot 03), 405(2 \cdot 90)$
$I V$	$240(3 \cdot 64), 275(2 \cdot 75), 336(2 \cdot 80)$
$V I a^{a}$	$240(3 \cdot 73), 294(3 \cdot 07)$
$V I a^{b}$	$239(3 \cdot 66), 293(2 \cdot 99)$
$V I b^{a}$	$240(3 \cdot 73), 293(3 \cdot 07)$
$V I b^{c}$	$240(3 \cdot 69), 293(3 \cdot 02)$

[^0]Table II
Preparation of compounds Ia, Ib, IIa, IIb, IIIIa-IIId

Product	Starting compound	Yield (\%)	M.p., ${ }^{\circ} \mathrm{C}$ solvent	Formula (mol. weight)	Calculated/found			
					\% C	\% H	$\% \mathrm{Cl}$	$\% \mathrm{~N}$
$I a$	VIIb	68	209•8-211•1	$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} . \mathrm{HCl}$	$60 \cdot 23$	7-18	$9 \cdot 36$	14.79
			2-propanol	(378.9)	59.74	$7 \cdot 08$	$9 \cdot 58$	14.77
$I b$	VIIb	80	251-255 ${ }^{\text {a }}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} . \mathrm{HCl}$	$59 \cdot 25$	6.91	9.72	15.35
			2-propanol	(364.9)	59.48	7.03	9.91	$15 \cdot 20$
IIa	VIII b	71	241.7-242.6	$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} . \mathrm{HCl}$	$60 \cdot 23$	$7 \cdot 18$	$9 \cdot 36$	14.79
			2-propanol	(378.9)	59.96	$7 \cdot 20$	$9 \cdot 24$	14.69
$I I b$	VIIIb	60	209.3-213.4	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{HCl}$	$59 \cdot 25$	6.91	9.72	$15 \cdot 35$
			ethanol	$(364 \cdot 9)$	$59 \cdot 19$	$7 \cdot 16$	9.92	15.47
IIIa	IXa	66	212.3-218.7	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O} . \mathrm{HCl}$	61.97	$7 \cdot 22$	$10 \cdot 16$	16.06
			ethanol	(348.9)	$61 \cdot 66$	$7 \cdot 47$	$10 \cdot 48$	15.61
IIIb	IXa	57	200•1-202•1	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O} . \mathrm{HCl}$	60.98	$6 \cdot 92$	$10 \cdot 59$	16.73
			ethanol	(334.9)	61.03	$6 \cdot 76$	10.98	16.43
IIIC	IXb	74	$229 \cdot 5-222 \cdot 2$	$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} . \mathrm{HCl}$	$60 \cdot 23$	$7 \cdot 18$	$9 \cdot 36$	14.79
			2-propanol	$(378 \cdot 9)$	$60 \cdot 16$	$7 \cdot 28$	$9 \cdot 11$	15.02
IIId	IXb	52	215.7-216.6	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} . \mathrm{HCl}$	$59 \cdot 25$	6.91	9.72	$15 \cdot 35$
			2-propanol	(364.9)	58.88	6.97	$10 \cdot 10$	$15 \cdot 19$

the insoluble portion was filtered off. The filtrate was acidified with 30% ethanolic solution of hydrogen chloride, and diethyl ether was added. The precipitate was filtered off and crystallized from a suitable solvent (Table II).

4-Chloro-1-(3-dimethylaminopropyl)-3-methyl-1 H-pyrazolo-
[3,4-b]quinoline Hydrochloride ($X b$)
Powdered potassium hydroxide ($1.7 \mathrm{~g} ; 30 \mathrm{mmol}$) was added to a suspension of $X a(2.2 \mathrm{~g} ; 10 \mathrm{mmol}$) in dimethyl sulfoxide (25 ml) and the mixture was stirred at room temperature for 1 h .3 - Di methylaminopropyl chloride hydrochloride ($1.7 \mathrm{~g} ; 11 \mathrm{mmol}$) was added and the mixture was stirred at room temperature for 8 h and then left to stand overnight. The mixture was poured into water (50 ml), the mixture was extracted with diethyl ether, the extract was washed with water and dried with magnesium sulfate. The filtrate was taken to dryness, the residue was dissolved in ethanol and acidified with 30% ethanolic solution of hydrogen chloride. Separated crystals were filtered off, yield $1 \cdot 8 \mathrm{~g}(53 \%)$, m.p. $239 \cdot 3-241 \cdot 4^{\circ} \mathrm{C}$. Ref. 12 reports m.p. $240-242^{\circ} \mathrm{C}$ (2-propanol). For $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClN}_{4} \cdot \mathrm{HCl}(339 \cdot 3$) calculated: $56 \cdot 64 \% \mathrm{C}, 5 \cdot 94 \% \mathrm{H}, 20 \cdot 90 \% \mathrm{Cl}, 16 \cdot 51 \% \mathrm{~N}$; found: $56 \cdot 72 \% \mathrm{C}, 5 \cdot 87 \% \mathrm{H}, 21 \cdot 12 \% \mathrm{Cl}, 16 \cdot 71 \% \mathrm{~N}$.

4,9-Dihydro-1-(3-dimethylaminopropyl)-3-methyl-4-oxo-1 H --pyrazolo[3,4-b]quinoline Hydrochloride (IV)

A mixture of $X b(1.1 \mathrm{~g} ; 32 \mathrm{mmol})$ and 2 m hydrochloric acid $(7.5 \mathrm{ml})$ was refluxed for 1 h and then taken to dryness. The residue was crystallized from ethanol; yield $1.0 \mathrm{~g}(96 \%)$, m.p. 247.0 to $248.9^{\circ} \mathrm{C}$. For $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O} . \mathrm{HCl}(320.8)$ calculated: $59.90 \% \mathrm{C}, 6.60 \% \mathrm{H}, 11.05 \% \mathrm{Cl}, 17.46 \% \mathrm{~N}$; found: $59.79 \% \mathrm{C}, 6 \cdot 54 \% \mathrm{H}, 11 \cdot 02 \% \mathrm{Cl}, 17 \cdot 26 \% \mathrm{~N}$.

2-[N -(4-Methoxyphenyl)-N-methyl-thiocarbamoylthio]acetic Acid

Carbon disulfide ($76 \mathrm{~g} ; 1 \mathrm{~mol}$) was added to a stirred solution of 4 -methoxy- N -methylaniline ($137 \mathrm{~g} ; 1 \mathrm{~mol}$) in 350 ml of ethanol and 160 ml of concentrated aqueous ammonia and the mixture was stirred at room temperature for 5 h . A solution obtained by neutralization of chloroacetic acid ($95 \mathrm{~g} ; 1 \mathrm{~mol}$) in 200 ml of water with powdered sodium carbonate ($53 \mathrm{~g} ; 0.5 \mathrm{~mol}$) was then added to the reaction mixture and stirring at room temperature was continued for 8 h . After acidification with concentrated hydrochloric acid and cooling the separated product was filtered off and washed with water; yield $213 \mathrm{~g}\left(89 \%\right.$), m.p. $174 \cdot 1-176 \cdot 2^{\circ} \mathrm{C}$. Analytical sample was obtained by crystallization from ethanol, m.p. $175 \cdot 2-176 \cdot 2^{\circ} \mathrm{C}$. For $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}_{2}$ (271.4) calculated: $48.69 \% \mathrm{C}, 4.83 \% \mathrm{H}, 5.16 \% \mathrm{~N}, 23.63 \% \mathrm{~S}$; found: $49.04 \% \mathrm{C}, 5.02 \% \mathrm{H}, 5.06 \% \mathrm{~N}$, $23 \cdot 54 \% \mathrm{~S}$.

4-(4-Methoxyphenyl)-4-methyl-thiosemicarbazide (XI)

100% Hydrazine hydrate ($50 \mathrm{~g} ; 1 \mathrm{mmol}$) was added to a mixture of $2-[\mathrm{N}$-(4 -methoxyphenyl)- N -- methyl-thiocarbamoylthiolacetic acid ($120 \mathrm{~g} ; 0.5 \mathrm{~mol}$), 150 ml of ethanol and 100 ml of concentrated aqueous ammonia. The mixture was stirred at room temperature for 4 days. The separated crystals were collected on a filter (74 g), the filtrate was after adding additional 100% hydrazine hydrate ($10 \mathrm{~g} ; 0.2 \mathrm{~mol}$) left standing for a fornight and another crop of crystals (10.5 g) was obtained. The combined portions were crystallized from ethanol; yield $71.3 \mathrm{~g}(67 \%)$, m.p. $118 \cdot 5-120 \cdot 2^{\circ} \mathrm{C}$. For $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}(211 \cdot 3)$ calculated: $51 \cdot 16 \% \mathrm{C}, 6 \cdot 20 \% \mathrm{H}, 19 \cdot 89 \% \mathrm{~N}, 15 \cdot 18 \% \mathrm{~S}$; found: $50 \cdot 87 \% \mathrm{C}, 6 \cdot 28 \% \mathrm{H}, 19 \cdot 96 \% \mathrm{~N}, 15 \cdot 08 \% \mathrm{~S}$.

4,9-Dihydro-6-methoxy-3,9-dimethyl-4-oxo-1 H -pyrazolo[3,4-b]quinoline (IXb)
Ethyl 2-chloroacetoacetate ($8.5 \mathrm{~g} ; 52 \mathrm{mmol}$) was added to a stirred suspension of $X I(10.5 \mathrm{~g}$; 50 mmol) in 250 ml of ethanol and the mixture was stirred for 2 h at room temperature, then refluxed for 30 minutes. The insoluble sulfur was removed by filtration of the hot mixture, the filtrate was taken to dryness and the residue was mixed with polyphosphoric acid (100 g) containing 85% of phosphorus pentoxide. The mixture was stirred at $90^{\circ} \mathrm{C}$ for 2 h , poured into water (11) and briefly boiled with activated carbon (2 g). The filtrate was cooled down and left to stand overnight in a refrigerator. The separated product was filtered off and crystallized from ethanol; yield $7.0 \mathrm{~g}(58 \%)$, m.p. $319-323^{\circ} \mathrm{C}$. For $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}(243 \cdot 3)$ calculated: $64.19 \% \mathrm{C}$, $5 \cdot 39 \% \mathrm{H}, 17.27 \% \mathrm{~N}$; found: $63.81 \% \mathrm{C}, 5.72 \% \mathrm{H}, 17 \cdot 13 \% \mathrm{~N}$. UV spectrum: $\lambda_{\max }, \mathrm{nm}(\log \varepsilon)$: $239(3 \cdot 70), 288(2 \cdot 88), 378(2 \cdot 79), 397(2 \cdot 80) ; \lambda_{\text {inf }}, \mathrm{nm}: 277,356$

4,9-Dihydro-6-hydroxy-3,9-dimethyl-4-oxo-1 H-pyrazolo[3,4-b]quinoline Monohydrate (IXc)

A mixture of $I X b(24.3 \mathrm{~g} ; 0.1 \mathrm{~mol})$ and 48% hydrobromic acid (400 ml) was refluxed for 16 h poured into water (1.5 l) and cooled. The separated product was filtered off, crystallized from 2-methoxyethanol; yield $21.2 \mathrm{~g}\left(86 \%\right.$), m.p. $344-348^{\circ} \mathrm{C}$. For $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (247.3) calculated: $58.29 \% \mathrm{C}, 5 \cdot 30 \% \mathrm{H}, 16.99 \% \mathrm{~N}$; found: $58.11 \% \mathrm{C}, 5 \cdot 41 \% \mathrm{H}, 17 \cdot 11 \% \mathrm{~N}$. UV spectrum: $\lambda_{\text {max }}, \mathrm{nm}(\log \varepsilon): 237$ (3.67), 287 (2.87), 377 (2.74), 402 (2.75).

4,9-Dihydro-6-(2-diethylaminoethoxy)-2-(2-diethylaminoethyl)-
-3,9-dimethyl-4-oxo-2H-pyrazolo[3,4-b]quinoline (VIa)
Sodium hydride (80% dispersion in mineral oil, $9.0 \mathrm{~g} ; 0.3 \mathrm{~mol}$) was added to a stirred suspension of thoroughly dried ($130^{\circ} \mathrm{C}, 0.4 \mathrm{kPa}$) of $I X c(11.5 \mathrm{~g} ; 50 \mathrm{mmol})$ in N, N-dimethylformamide $(250 \mathrm{ml})$ and the mixture was stirred under nitrogen for 2 h .2 -Diethylaminoethyl chloride hydrochloride ($18.9 \mathrm{~g} ; 110 \mathrm{mmol}$) was added and the stirring at room temperature was continued for 24 h . The mixture was taken to dryness, the residue as crystallized from hexane; yield 17.1 g $\left(80 \%\right.$), m.p. $70.8-72 \cdot 3^{\circ} \mathrm{C}$. For $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{2}$ (427.6) calculated: $67.42 \% \mathrm{C}, 8.72 \% \mathrm{H}, 16 \cdot 38 \% \mathrm{~N}$; found: $67 \cdot 12 \% \mathrm{C}, 8 \cdot 86 \% \mathrm{H}, 16 \cdot 28 \% \mathrm{~N}$. From $5 \cdot 3 \mathrm{~g}$ of the base $5.9 \mathrm{~g}(82 \%)$ of dihydrochloride monohydrate was obtained by usual way, m.p. $219 \cdot 8-222 \cdot 9^{\circ} \mathrm{C}$ (decomp.). For $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{2}$. $.2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}(518.5)$ calculated: $55.59 \% \mathrm{C}, 7.97 \% \mathrm{H}, 13.67 \% \mathrm{Cl}, 13.51 \% \mathrm{~N}$; found: $55.30 \% \mathrm{C}$, $7.97 \% \mathrm{H}, 13 \cdot 86 \% \mathrm{Cl}, 13 \cdot 59 \% \mathrm{~N}$.

4,9-Dihydro-6-(3-dimethylaminopropoxy)-2-(3-dimethylaminopropyl)-
-3,9-dimethyl-4-oxo- 2 H -pyrazolo[3,4 - b]quinoline ($V I b$)
This compound was obtained from $I X c$ and 3 -dimethylaminopropyl chloride hydrochloride, according to the procedure described for the preparation of VIa; yield 64%, m.p. $90 \cdot 2-91 \cdot 4^{\circ} \mathrm{C}$ (hexane). For $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{2}$ (399.5) calculated: $66 \cdot 14 \% \mathrm{C}, 8 \cdot 33 \% \mathrm{H}, 17 \cdot 53 \% \mathrm{~N}$; found: $66 \cdot 16 \% \mathrm{C}$, $8.41 \% \mathrm{H}, 17.77 \% \mathrm{~N}$. From 5.8 g of this base 5.1 g of dihydrochloride dihydrate (69%) was obtained, m.p. $226 \cdot 1-235 \cdot 5^{\circ} \mathrm{C}$ (decomp.). For $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{2} .2 \mathrm{HCl} .2 \mathrm{H}_{2} \mathrm{O}$ ($508 \cdot 5$) calculated: $51.97 \% \mathrm{C}, 7.73 \% \mathrm{H}, 13.94 \% \mathrm{Cl}, 13.77 \% \mathrm{~N}$; found: $51.51 \% \mathrm{C}, 7 \cdot 26 \% \mathrm{H}, 14 \cdot 17 \% \mathrm{Cl}, 13 \cdot 54 \% \mathrm{~N}$.

Acknowledgement is due to Mrs J. Komancová and Mrs V. Šmidová for the elemental analyses (Head: Dr J. Körbl), and to Dr B. Kakáč for interpreting the UV spectra.

REFERENCES

1. Rádl S., Zikán V.: Drugs Fut. 10, 215 (1985).
2. Rádl S., Zikán V., Smejkal F.: Collect. Czech. Chem. Commun. 50, 2010 (1985).
3. Rádl S., Roubínek F., Šmejkal F., Zikán V.: Cesk. Farm. 34, 190 (1985).
4. Schulenberg J. W. (Sterling Drug Inc.): Ger. Offen. 2759468.
5. Angier R. B., Citarella R. V., Damiani M., Fabio P. F., Fields T. L., Kang S. M., Lin Y., Lindh H. F., Murdock K. C., Petty S. R., Wilkinson R. G., Lang S. A.: J. Med. Chem. 26, 1710 (1983).
6. Rádl S., Zikán V.: Collect. Czech. Chem. Commun. 52, 788 (1987).
7. Rádl S., Zikán V., Šmejkal F.: Collect. Czech. Chem. Commun. 50, 1057 (1985).
8. Rádl S.: Janssen Chimica Acta 5 (2), 3 (1987).
9. Rádi S., Zikán V.: Collect. Czech. Chem. Commun. 51, 1692 (1986).
10. Jelínek V.: Neoplasma 7, 146 (1960).
11. Jelínek V., Semonský M., Francová V., Veselá H., Hradil F.: Neoplasma 16, 121 (1968).
12. Crenshaw R. R., Luke G. M., Siminoff P.: J. Med. Chem. 19, 262 (1976).

Translated by the author (S.R.).

[^0]: ${ }^{a}$ Base; ${ }^{b}$ dihydrochloride monohydrate; ${ }^{c}$ dihydrochloride dihydrate.

